

Squiz Matrix CMS - Multiple

Issues
Security Advisory

Date 9/12/2019

Version: 1.0

www.zxsecurity.co.nz 1/7

Squiz Matrix CMS - Multiple Issues

Table of Contents

1. Document Control ... 2

1.1. Document Information ... 2

1.2. Revision Control .. 2

2. Background.. 2

2.1. Introduction .. 2

2.2. Affected versions .. 3

2.3. Disclosure Timeline ... 3

3. Technical Findings .. 4

3.1. PHP unserialization of user input may result in remote code execution 4

3.2. Arbitrary file deletion and information disclosure in file upload form 6

4. References ... 6

www.zxsecurity.co.nz 2/7

Squiz Matrix CMS - Multiple Issues

1. Document Control

1.1. Document Information

Title Squiz Matrix CMS - Multiple Issues - Security Advisory

Document Filename ZX Security Advisory - Squiz Matrix CMS - Multiple Vulnerabilities.docx

1.2. Revision Control

Version Date Released Pages Affected Author Description

1.0 06/12/2019 All Stephen Shkardoon Initial release

2. Background

2.1. Introduction

ZX Security identified several vulnerabilities the Squiz Matrix CMS that can be chained together to gain

pre-authenticated remote code execution in some circumstances.

www.zxsecurity.co.nz 3/7

Squiz Matrix CMS - Multiple Issues

2.2. Affected versions

The issues in this advisory affect the following versions of Squiz Matrix:

• 5.5.0 prior to 5.5.0.3

• 5.5.1 prior to 5.5.1.8

• 5.5.2 prior to 5.5.2.4

• 5.5.3 prior to 5.5.3.3

2.3. Disclosure Timeline

ZX Security would like to commend the prompt response and resolution of these reported issues by the

vendor.

Vendor notification: August 09, 2019

Vendor response: August 09, 2019

Fixed versions released: August 29, 2019

www.zxsecurity.co.nz 4/7

Squiz Matrix CMS - Multiple Issues

3. Technical Findings

3.1. PHP unserialization of user input may result in remote code
execution

CVE-2019-19373

When an instance of a Remote Content page exists within a Squiz Matrix CMS website, user input is passed

directly and unsantized to the PHP function unserialize. In some versions of PHP (e.g. before 5.4.24), this

can be leveraged into a LFI issue. If combined with arbitrary file upload with the Squiz Matrix CMS website,

this leads to remote code execution.

Within packages/cms/page_templates/page_remote_content/page_remote_content.inc, the POST

parameter “page_remote_content_[pageid]_sq_remote_input_file_names” is passed to unserialize. No

generic unserialization gadgets were identified within the default installation, so the autoloader can be

attacked instead.

There are multiple autoloaders that are enabled during the standard Squiz Matrix execution path. Of note

is one found in vendor/simplesamlphp/saml2/src/_autoload.php. When given a class name that contains

characters such as “.” and “/”, it will directly use these to include a file. This is a local file inclusion issue

within the code, though is codified within PSR standards, and not normally exploitable. It should be noted

however that underscores are not valid within a filename included in this method.

Using this class, we can potentially include a file simply by having PHP attempt to instantiate a class with

a malicious name.

There is a second autoloader within the codebase that is not run by default:

vendor/gettext/languages/src/autoloader.php. This autoloader contains the same kind of issue, however

without the underscore limitation (though with other limitations, such as the class beginning with a certain

string). Once again, this is part of the PSR specification, and not normally exploitable.

PHP includes within its unserialize function a check on the class name of a deserialized object to ensure it

does not contain invalid characters. This means we cannot directly trigger the LFI issue using deserialize.

Instead, we can use a more standard deserialize exploitation example, where we instantiate a class that

calls specific code on __destruct. Through reviewing the codebase, multiple places were found that are

applicable to this case.

Consider: vendor/simplesamlphp/simplesamlphp/lib/SimpleSAML/Store/Redis.php. The destruct method

of this class calls the `method_exists` function on the `$this->redis` variable, which we can control. The

`method_exists` function, among many others, will trigger the autoloader with the first variable specified

www.zxsecurity.co.nz 5/7

Squiz Matrix CMS - Multiple Issues

(in this case, `$this->redis`, which we control). It should be noted once again that this is not the same on

all versions of PHP (see references at the end of this advisory).

The last part of exploitation is a deserialize technique called "fast destruct". This allows an object to be

destructed within a single deserialize call, which allows use to instantiate two classes which trigger the LFI

exploit sequentially within a single request.

Putting together these steps, we can generate an unserialize payload like this:

$r = new SimpleSAML\Store\Redis('../../../../vendor/gettext/languages/src/autoloader');

$r2 = new SimpleSAML\Store\Redis('Gettext\Languages\../../../../x.php'); // File to include

echo serialize(array($r, $r2));

This gives a payload such as:

a:2:{i:0;O:22:"SimpleSAML\Store\Redis":1:{s:5:"redis";s:51:"../../../../vendor/gettext/languages/src/autoloader";}i:1;O:22:"S

impleSAML\Store\Redis":1:{s:5:"redis";s:220:"Gettext\Languages\../../../../data/private/assets/form_email/0008/38978/in

complete_attachments/e7b54mbvmmkfuip5tnogfter9k4ddndf81caoso02ceknl1m5ikmt1ijnn9u9bnaj861iv3tgar1e3od3

bi4l13uctm1l5uotiubrf2/38978_q1/simple_shell";}}

If we modify this with the fast destruct method, we get the payload:

a:2:{i:0;O:22:"SimpleSAML\Store\Redis":1:{s:5:"redis";s:51:"../../../../vendor/gettext/languages/src/autoloader";}i:0;O:22:"S

impleSAML\Store\Redis":1:{s:5:"redis";s:220:"Gettext\Languages\../../../../data/private/assets/form_email/0008/38978/in

complete_attachments/e7b54mbvmmkfuip5tnogfter9k4ddndf81caoso02ceknl1m5ikmt1ijnn9u9bnaj861iv3tgar1e3od3

bi4l13uctm1l5uotiubrf2/38978_q1/simple_shell";}}

Once we send this request to the server on a Remote Page type, we achieve LFI of a file we previously

uploaded to the server, resulting in remote code execution.

www.zxsecurity.co.nz 6/7

Squiz Matrix CMS - Multiple Issues

3.2. Arbitrary file deletion and information disclosure in file upload
form

CVE-2019-19374

When an instance of a custom form with a File Upload Field exists within a Squiz Matrix CMS website,

users of the website may be able to delete arbitrary files from the server through the delete uploaded file

feature. Additionally, this feature discloses the full path of files uploaded to the server, a form of

information disclosure.

When a user uploads a file to a form, they can keep track of the files with the "prev_files" array, which is

rendered in the HTML after a file is uploaded. This array contains the full path to each uploaded file. The

relevant code can be found in:

core/assets/form/form_question_types/form_question_type_file_upload/form_question_type_file_upl

oad.inc

An attacker can replace this path to one of their choosing, such as setting it to "data/private/conf/db.inc",

and choose the delete file option. This deletes the file from the server.

4. References

For more information on the PHP unserailize fast destruct technique, see:

https://github.com/ambionics/phpggc.

For more information on exploiting the PHP autoloader, including information on exactly which PHP

versions are affected, see:

https://medium.com/@ss23/php-autloading-local-file-inclusion-by-design-71aafe627877

https://github.com/ambionics/phpggc
https://medium.com/@ss23/php-autloading-local-file-inclusion-by-design-71aafe627877

ZX Security Limited

Level 1, 50 Manners St

Wellington, New Zealand

